Sarcomere length fluctuations and flow in capillary endothelial cells.
نویسندگان
چکیده
Tensile force within non-muscle tissue cells is generated in actomyosin stress fibers, which are composed of contractile units called sarcomeres. The number of sarcomeres and sarcomere lengths dynamically change in the cell but the mechanisms by which these processes occur are not understood. Using live cell imaging of labeled sarcomeres, we show that sarcomere lengths continually fluctuate, with a fluctuation relaxation time of about 20 min. New sarcomeres are formed at focal adhesions and are convected into the fiber at a speed that is independent of focal adhesion size, suggesting that the speed is independent of tension. Furthermore sarcomeres were observed to disappear at specific points or "sinks" along the stress fibers. These results show that stress fibers are highly dynamic structures despite their relatively static morphology, with nascent sarcomeres forming and being incorporated into the fiber at a nearly uniform, tension-independent velocity throughout the cell. The fluctuating length of individual sarcomeres under constant tension is consistent with a model whereby sarcomere contraction/expansion speed, rather than sarcomere length, is modulated by tension.
منابع مشابه
Sarcomere mechanics in capillary endothelial cells.
Tension generation in endothelial cells of the aorta, spleen, and eye occurs in actin stress fibers, and is necessary for normal cell function. Sarcomeres are the tension-generating units of actin stress fibers in endothelial cells. How sarcomeres generate and maintain tension in stress fibers is not well understood. Using femtosecond laser ablation, we severed living stress fibers and measured...
متن کامل3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression
New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...
متن کاملCapillary Network Formation by Endothelial Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells
Human bone marrow derived mesenchymal stem cells (HBMSCs) have the potential to differentiate into cells such as adipocyte, osteocyte, hepatocyte and endothelial cells. In this study, the differentiation of hBMSCs into endothelial like-cells was induced in presence of vascular endothelial growth factor (VEGF) and insulin-like growth factor (IGF-1). The differentiated endothelial cells were exam...
متن کاملCapillary geometrical changes with fiber shortening in rat myocardium.
Capillary-to-fiber geometrical relations constitute an integral component of peripheral gas exchange. Determination of capillary length and surface area density necessitates quantification of capillary orientation (i.e., tortuosity and branching). In skeletal muscle, capillary tortuosity increases in a curvilinear fashion at reduced sarcomere length, and this compensates for decreased capillary...
متن کاملDifferentiation of Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Endothelial-Like Cells
Background: Stem cell therapy for the treatment of vascular-related diseases through functional revascularization is one of the most important research areas in tissue engineering. The aim of this study was to investigate the in vitro differentiation of umbilical CL-MSC into endothelial lineage cells. Methods: In this study, isolated cells were characterized for expression of MSC-specific marke...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cytoskeleton
دوره 68 3 شماره
صفحات -
تاریخ انتشار 2011